ANSYS高级分析-子结构(一)

1 引言
   在ANSYS平台上,所谓子结构技术就是将一组单元用矩阵凝聚为一个单元过程的技术,切吧这个单一的矩阵单元称为超单元。在ANSYS分析中,超单元可以象其他单元类型一样使用。唯一的区别就是必须先进行结构生成分析以生成能够利用的超单元。但子结构并非在所有ANSYS模块中都能利用,目前ANSYS子结构技术可以在ANSYS/Mutiphysics,ANSYS/Mechanical和ANSYS/Structural中使用。
   在ANSYS平台上,使用子结构的目的主要是为了节省机时,并且允许在比较有限的计算机设备资源的基础上求解超大规模的问题。比如进行非线性分析和带有大量重复几何结构的分析。在非线性分析中,可以将模型线性部分作成子结构,这部分的单元矩阵就不用在非线性迭代过程中重复计算。而在有重复几何结构的模型中(如有四条腿的桌子),可以对于重复的部分生成超单元,然后将它拷贝到不同的位置,这样做可以节省大量的计算时间和计算机资源。
    子结构还用于模型有大转动的情况下。对于这些模型,ANSYS假定每个结构都是围绕其质心转动的。在三维情况下,子结构有三个转动自由度和三个平动自由度。在大转动模型中,用户在使用部分之前无须对子结构施加约束,因为每个子结构都是作为一个单元进行处理,是允许刚体位移的。
    对于大型三维问题的分析而言,需用磁盘空间相对于一个普通计算机系统来说太庞大了,在这种情况下,用户可以通过子结构将问题分块进行分析,从而使得每一块对于计算机系统来说都是可以计算和承受的。
2 ANSYS子结构使用步骤
ANSYS子结构使用过程分为以下三个步骤:
1)ANSYS子结构生成部分
生成部分就是将普通的有限元单元凝聚为一个超单元。凝聚是通过定义一组主自由度来实现的。主自由度用于定义超单元与模型中其他单元的边界,提取模型的动力学特性。图1是一个板状构件用接触单元分析的示意。由于接触单元需要迭代计算,将板状构件形成子结构将显著地节省机时。本例中,主自由度是板与接触单元相连的自由度。
图1 子结构使用示例
2)ANSYS子结构使用部分
用部分就是将超单元与模型整体相连进行分析的部分。整个模型可以是一个超单元,也可以象上例一样是超单元与非超单元相连的。使用部分的计算只是超单元的凝聚(自由度计算仅限于主自由度)和非超单元的全部计算。
3)ANSYS子结构扩展部分
使扩展部分就是从凝聚计算结果开始计算整个超单元中所有的自由度。如果在使用部分有多个超单元,那么每个超单元都需要有单独的扩展过程。
图2示出了整个子结构分析的数据流向和所用的文件。三个步骤的详细解释见以后的叙述。
图2典型子结构分析中的数据流向
3 关于子结构生成部分
本节主要介绍在ANSYS子结构生成部分在使用时的一些操作技术问题。在利用子结构生成部分生成超单元时分为两步:建立模型、施加边界条件,生成超单元矩阵。
3.1建立模型
在子结构建立模型的工作中,通用性的工作指定文件名和分析名称,用PREP7定义单元类型,单元实参,材料特性和模型几何结构。
而需要特别注意和记忆的有以下几点:
1)文件名:在子结构分析中很有用处。有效地使用文件名,在三部分分析中可以省略很多文件处理操作。
可以用以下方法指定文件名:
Command: /FILENAME
GUI: Utility Menu>File>Change Jobname
如:/FILENAME,GEN
2)单元类型:ANSYS提供的绝大多数单元都可以用来生成超单元。唯一的限制是单元必须是线性的。如果生成超单元时有双线性单元的话,ANSYS将自动作为线性单元处理。需要注意的是在直接耦合中带载荷向量的耦合单元是不能做子结构分析的。可以用同种形状的单元来替代。细节参看ANSYS Coupled-Field Analysis Guide。
3)材料特性:定义所有必须的材料特性。例如,如果生成质量矩阵,就必须定义密度或其他形式的质量;如果要生成热传导矩阵,就要定义比热。同样,超单元是线性的,非线性材料将被忽略。
4)模型生成:在生成部分,主要生成模型的超单元部分。非超单元部分是在以后的使用部分生成的。但是,在建模的开始就需要对模型的两个部分有所规划,主要是确定超单元部分和非超单元部分如何连接。为了保证连接正确,应该保证接触部分结点号一致。
如果想生成整体模型则需将模型存储在数据库文件中,选择子结构部分进行生成计算。在以后的使用部分,RESUME(Utility Menu>File>Resume from)数据库文件,不选(unselect)子结构,用超单元矩阵代替。
3.2边界条件与超单元矩阵
生成部分的结果包含超单元矩阵。象其他分析一样,用户要自行定义分析类型和分析设置、施加边界条件、定义载荷步、开始计算。这部分的分析步骤如下文所示:
1)进入求解器
Command: /SOLU
GUI: Main Menu>Solution
2)定义分析类型和分析设置
分析类型——选择生成超单元使用下列方法:
Command: ANTYPE
GUI: Main Menu>Solution>-Analysis Type-New Analysis
3)用下列方法定义主自由度
Command: M
GUI: Main Menu>Solution>Master DOFs>Define
4)施加边界条件
5)定义载荷步选项
子结构中可以施加的载荷如表1所示。
表1 子结构中可以施加的载荷
6)存储数据库的备份文件
Command: SAVE
GUI: Utility Menu>File>Save as Jobname.db
7)开始计算
Command: SOLVE
GUI: Main Menu>Solution>Current LS
计算结果包括超单元矩阵文件,Sename.SUB,Sename是通过[SEOPT]指定的文件名或是工作文件名[/FILENAME]。矩阵文件包括根据施加的载荷计算出的载荷向量。(如果没有施加载荷,载荷向量将为零。)
8)如有另外的载荷步,重复步骤7来生成其他的载荷向量。
9)退出SOLUTION
Command: FINISH
GUI: Main Menu>Finish
4 总结
   ANSY子结构技术能够让普通计算机发挥更大的作用,使得普通机进行大规模问题的分析成为可能,子结构技术扩展了ANSYS在分析问题时的适用性,灵活的掌握和应用子结构分析技术能够给分析带来极大的方便,特别是分析问题规模较大时,更能体现子结构分析技术的优势。

 

返回Ansys文章专题列表>>>