摘要: 具有复杂截面的传输线的特性阻抗计算一直是领域内的热点问题,尽管已有相关的 解析解法,但是当截面形状不规则时,数值方法无疑是更好的选择。本文介绍了如何采用 有限元方法(FEM)计算均匀无耗传输线的特性阻抗,着重探讨了如何在大型通用有限元软 件ANSYS上实现传输线特性阻抗计算的数值模拟,并以一种TEM传输室的设计计算为例,应用 ANSYS软件计算各段结构的截面特性阻抗,指导其各部分结构的确定,从而达到优化TEM传输 室各设计参数的目的。测试表明计算的结果与实传输线阻抗值相吻合,这种方法大大的方便 了特性阻抗的确定并提高了特性阻抗计算的精度。
关键词:特性阻抗;有限元;传输线;ANSYS
Application of Finite Element Software ANSYS to Calculate Characteristic
Impedance of Transmission Line
LIU Bin,LI Gang
(EMC Lab,Department of Mechanical Engineering, Southeast Unive rsity, Nanjing,210096, China)
Abstract: The calculation of characteristic impedance of transmission line with complicate d section is a hot spot in field Although some analytic method is available, numeric method is a better choice when the section is very irregular. This article presents how to calculate characteristic impedance of transmissi on line based on the Finite Element Method (FEM) The numerical simulation of c haracteristic impedance of transmission line, which is implemented by using ANSY S FEM software, is focused especially here Taking the design of a sort of TEM as example,The ANSYS FEM software is used to determine the dimension of se ction of the cell, in order to optimize the design parameters Subsequent testi ng inosculates with the result from ANSYS simulation.The application indicates that the method have a good achievement for improving the design of TEM cell
Keywords:characteristic impedance; finite element; transmiss ion line;ANSYS
1 引言
有限元方法是当今数值计算领域应用最广泛、最成熟的一种计算方法,其优点是通用性强、 精度高。随着有限元理论的深入研究,各种通用软件也应运而生,ANSYS以 其强大的前后处理功能,可靠的计算精度成为了业界的佼佼者,充分应用他可以使研究者 的注意力集中到工程设计中来。遗憾的是目前其在电磁领域的应用明显弱于力学、结构等学 科。
本文结合广泛应用于电磁兼容性试验TEM传输室和GTEM传输室的设计计算,应用ANSYS在电磁领域的计算模块,计算传输线特性阻抗,优化并简化TEM传输室的设计,并据此在ANSYS二次 开发出相应的模块。特殊截面传输线特性阻抗的计算一直是热点问题,目前普遍采用的解决方法通常有2类:第一类是解析类的保角变换法,通过保角变换可以把复杂的边界转 换成比较简单的边界,然后通过比较简单的办法进一步求得解析解,但是对于不规则的截面 形状找到合适的变换函数有时几乎是不可能的,因此这种方法实际上只能解决一些特殊截面 问题;第二类是近似的数值解法,以有限元法、有限差分法、边界元法为代表。
2 有限元法计算特性阻抗的基本原理
由传输线理论可知,无耗均匀传输线特性阻抗Z0是表征长线固有特性的参数,仅决定 于传输线的界面形状、尺寸、周围介质而与频率无关。
其中:L0为传输线单位长度的电感量,C0为单位长度的电容量。
电磁波在真空中的传播速度(光速)C由式(2)确定:
由式(3)可知,特性阻抗的确定关键是其分布电容的确定。
用有限元法求解分布电容的思路:以数值方法确定截面的电场分布,再根据区域内能量与场 强的关系式:
得到区域内的电场能,以下是这一思路的基本推导过程:
对于以TEM为主模传输的大部分传输线来说,其内部场分部的求解可以采用二维准静态 的方法处理,在二维平面场的情况下,区域内电场分布用Lap lace方程第一类边界条件描述 为:
由变分原理可知上述边值问题等价于在满足条件φc=f1的函数类中 ,求φ以使下面的泛函取得最小值:
不难得出,变分原理在此处的物理意义为:当用边值问题求解静电场电位时,在求解区 域中当电磁场稳定后电场能量达到最小。
进行场域的剖分、插值,对式(6)进行取极值得到刚度矩阵:
式(8)即为有限元法的代数方程组,[k]为其系数矩阵,[k]=(kij) (i,j=1,2, 3,…,n0)。
对方程组的求解即可得到场域位函数Φ(x,y),根据式(9)容易得到区域内的电场解:
至此电场分量的求解完成。将式(4)应用到这里就可得到区域内的电场能量,如式(10 ):
其中:Ex,Ey是单元I上电场的对应分量,Si为对应场域的面积。
求得电场能量后,再由式(11)即可得出截面分布电容:
其中:ΔV为两导体间电势差。
3 分析过程
3.1建立模型
对于一个给定的传输线截面来说,一般可以分为2种情况:一是截面为封闭系统,同轴线结 构及其各种形式的变种,如微带线、GTEM小室等,如图1所示。第二种是两导体间的介质空 间具有开放的边界,如平行结构双线,如图2所示。两种情况建模时要分别对待。对第一 种情况只需在内外导体间加电位差,划分网格计算即可;而对第二种情况则要在开放的边界 外再设置无限边界单元,然后计算区域内的电场能量。
此处以TEM小室内传输截面为例属于第一种情况如图3所示。
根据前面的分析可知,提取截面的电容只要用到ANSYS的静电场分析模块,依次进行如下步 骤:
生成几何图形→设置材料属性、添加二维静电场单元PLANE121→设置内导体及侧板局部细化 参数→进行网格划分进行上述操作后即得到如图4所示的计算模型。
3.2加载边界条件及求解
对于用静电场模块提取电容的加载很简单,只需在相应导体上施加电压载荷即可,在这里将 相当于外导体的各边施加电压0 V,内导体各边施加电压1 V,这样即在内外导体间施加了1 V的电势差,以上工作完成后求解即可。图5为求解后模型的能量分布。
3.3截面电容的提取
ANSYS强大的后处理可以使用户方便地调用任何结果参数,结果的获得可以通过命令或者GUI 方式,在后处理程序中按照以下步骤:
定义单元列表→提取单元总能量→在参数菜单里提取电容。结果界面如图6所示。
需要注意的是,当所分析截面为如图2所示的情况时应首先用二维无限单元(如ANSYS程序中的 单元110)对外围阴影表示的无限区域进行网格划分,无限区域的范围随不同模型的具体情况 而变。
4结论
本例中,复杂截面传输的特性阻抗得到了比较理想的控制,用Tektronix公司的1502B时域 反射计测试设计阻抗的结果同样验证了方法的可行性。
由上述分析可知,利用ANSYS计算传输线特性阻抗方便快捷,相比经验公式他能提供更准确 的数据,又可省去繁琐的编程过程。
ANSY还提供了宏(MACRO)、参数化设计语言(APDL)、用户界面设计语言(UIDL)和用户 可编程特性(UPFs)几种二次开发工具,利用这些二次开发工具可以容易的开发出针对特性 阻抗计算的模块,在ANSYS中特性阻抗的计算方法是:在后处理中,定义能量单元表,并相 加各单元的能量求出总能量,然后按式(11)求出分布电容,进而求得特性阻抗。
|